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Summary. The purpose of  this article was to extend the 
model used to predict selection response with selfed 
progeny from 2 alleles per locus to a model which is 
general for number  and frequency of  alleles at loci. To 
accomplish this, 4 areas had to be dealt with: 1) sim- 
plification of  the derivation and calculation of  the 
condensed coefficients of  identity; 2) presentation of  
the genetic variances expressed among and within 
selfed progenies as linear function of  5 population 
parameters; 3) presentation of  selection response equa- 
tions for selfed progenies as functions of  these 5 
population parameters; and 4) to identify a set of  
progeny to evaluate, such that one might be able to 
estimate these 5 population parameters. 

The five population parameters used in predicting 
gains were the additive genetic variance, the domi- 
nance variance, the covariance of  additive and homo- 
zygous dominance deviations, the variance of  the 
homozygous dominance deviations and a squared in- 
breeding depression term. 

Key words: Selection response - Selfed progeny - 
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Introduction 

Several models have been developed which explain 
genotypic covariances of  relatives under some form of  
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inbreeding (Gillois 1964; Harris 1964; Jacquard 1974; 
Weir and Cockerham 1977). These models are appli- 
cable to random mating populations, with multiple 
alleles per locus, and are general for system of in- 
breeding. Several models have also been developed for 
the more restricted inbreeding system of  self-fertiliza- 
tion (Homer and Weber 1956; Cockerham 1983). 
Homer  and Weber's model requires the assumption of  
two alleles per locus. Each of  these models can be used 
to determine the expectations of  genotypic covariances 
of  inbred individuals with known relationship. Cocker- 
ham (1983) has shown how his model may be used to 
determine the total genetic variance expressed among 
individuals at a given level of  inbreeding and the 
genotypic covariance of  parent and offspring. In con- 
trast, crop breeders work primarily with progenies ob- 
tained by self-fertilization, and are interested in genetic 
variability expressed among and within these proge- 
nies. 

Theoretical gains from selection can be calculated as the 
product of the selection differential and the regression of the 
phenotypic value of the response unit on the phenotypic value 
of the selection unit (Hallauer and Miranda 1981). The 
theoretical models used in prediction, where both the response 
units and selection units are non-inbred progenies or indi- 
viduals, are general for numbers and frequencies of alleles at 
loci (Cockerham 1969; Nyquist 1978). This, however, is not 
the situation when both the response and selection units are 
inbred progenies. The prediction equations for either S1 or $2 
recurrent selection are based on models which assume two 
alleles per locus (Sprague 1966). 

Recently, Cockerham and Matzinger (1985) presented 
selection response equations, based on a model which is 
general for number and frequency of alleles, where the selec- 
tion unit was an inbred individual and the response unit was 
either an individual who is more inbred or an outbred indi- 
vidual. In contrast, the equations presented by Sprague (1966) 
predict the change in the population mean following both 
recombination and inbreeding to an identical level as the 



selection unit. The only available information on estimating 
the parameters used by Cockerham (1983) was a suggested set 
of progenies to evaluate. 

The purpose of this article is to present an alternate 
derivation of the identity measures employed by 
Cockerham (1983) and Jacquard (1974); present the 
expectations of variances expressed among and within 
selfed progenies; present selection response equations 
where the selection and response units are equally 
inbred; and to provide an alternative set of  progeny to 
evaluate which can provide estimates of the parameters 
in Cockerham's model (Cockerham 1983). 

Alternate derivation of condensed coefficients 
of identity 

The covariance of relatives under any regular system of in- 
breeding can be calculated as a linear function of five popula- 
tion variances or quadratic forms (Cockerham 1983; Jacquard 
1974). The coefficients of each population parameter are 
either sums or differences of the condensed coefficients of 
identity defined by both Cockerham (1983) and Jacquard 
(1974). The condensed coefficients of identity are tedious and 
often difficult to calculate directly. Nyquist (1978) presented 
a set of 37 rules used in the direct calculation of Cockerham's 
condensed coefficients of identity. Indirect methods of calcula- 
tion have been proposed by Chevalet and Gillois (1977) and 
used by Cowen et al. (1985). 

When the inbreeding system is strictly limited to 
self pollination, then the condensed coefficients of 
identity can be calculated directly as products of the 
inbreeding coefficient and conditional inbreeding coef- 
ficients. This alternative derivation is presented in 
Table 1. 

It should be noted that condensed states of identity 
6 through 9 cannot occur with strict self pollination for 
individuals in generations g and g' where the last 
common ancestor is in generation t. All 4 of these states 
of identity require a minimum of 3 alleles all mutually 
nonidentical by descent, however the individual in 
generation t carries only two alleles. Calculation of the 
inbreeding coefficients of the individuals in genera- 
tions g and g', the coefficient of parentage between 
them, and the coefficients of all the population param- 
eters in the genotypic covariance of these two relatives 
can now be accomplished. The inbreeding coefficients 
are obtained as either 

Fg = l -  (�89 and 

Fg,= 1 -  (�89 or 

Fg = A I + A 2 + A  4 and 

F g , = A  1 + z~3 + z~ 4 . 

The coefficient of parentage between these individuals 
in generations g and g' is 

1 (A2_]_ A3 q_ z~5) = 1(1 + Ft). rgg, = A  I + ~  
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Where rgg, is designated 0gg, by Cockerham (1983). 
Before the covariance of these individuals can be de- 
fined the population variances and quadratic com- 
ponents involved must first be defined. 

The population considered is assumed to be in 
linkage equilibrium, with no linkage of genes affecting 
the trait. Assuming no epistasis, then, all variances and 
quadratic components defined for the population will 
be the sum of the values for the individual loci, and 
consideration can be given to a single locus. Similarly, 
predicted selection response can be expressed as the 
sum of the predicted responses for individual loci. The 
structure of  the population at a single locus is 

~ Pi Pj Ai Aj, 
i j 

and the structure after n generations of self pollina- 
tion is 

F n ~ p iAiAi  + (1 - Fn) ~'~ ~'~ Pi pjAi Aj 
i i j 

where Pi is the frequency of Ai in the population and 
Fn is defined as above. The structure of the fully inbred 
population is ~ piAiAi. Assuming an additive, domi- 

i 
nance model, the genotypic value for A i Aj is 

Gij = fl + 5 i q- 5j -k- ~ij, 

where/t is the population mean genotypic value, 5i and 
53 are the average effects of alleles A i and A i fit by 
least squares procedures, and 6ij is the dominance de- 
viation. In the remaining discussion, the genotypic 
values will be coded by subtracting p. By definition, 

Z p i 0 q = Z  p j 5 j = 0 ,  and 
i j 

E Pi ~ij = Z Pj ~ij = Z ~ Pi Pj ~ij = 0 .  
i j i j 

It can be shown that the genotypic covariance of 
relatives is a linear function of five population vari- 
ances or quadratic components; the additive genetic 
variance 

a 2 = 2 E Pi 52, 
i 

the dominance variance 

a2  = E E PiPj 02,  
i j 

the covariance of additive and homozygous dominance 
deviations 

Ol = ~ Pi 5i 6ii, 
i 

the variance of the homozygous dominance deviations 

D 2 = Z P i ~ i 2 i - [  i ~ P i ~ i i ] 2 ' ,  
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Table 1. Condensed coefficients of identity for individuals in generations g and g' obtained by self pollination where the last 
common relative was in generation t 

State State ofidentify 
no. ofprogenyin 

generations 

Identity condition of parent in generation t 

g g' �9 �9 �9 �9 Condensed coefficient 

~ a 1 1. ~- (Fg_t) (Fg,_t) 1 /11 1 
(1 -- Ft) 7 (Fg- t )  (Fg'- t)  + Ft  

2. ~ (Fg_t) (1 - Fg,_t) 0 /12 (l  -- Ft) (Fg_t) (1 - Fg,_t) 

3. ~ ( l  -- Fg_t) (Fg,_t) 0 /13 (1 - Ft) (1 - Fg_t) (Fg,-t) 

I I l 4. )- (Fg_t)  (Fg,_t) 0 /14 (1 -- Ft) (�89 (Fg_t) (Fg,_t) 

5. (1 - Fg_t) (1 - Fg,-t) 0 d5 (1 - Ft) (1 - Fg_t) (1 - Fg,_t) 

I �9 6. 0 0 A 6 0 

�9 I 7. 0 0 A 7 0 

8. 0 0 As 0 

9. 0 0 A 9 0 

Probability of parental state (1 - Ft) (Ft) b 

a A line connecting any pair of alleles indicates they are identical by descent 
b F,  = 1 - (�89 where n is the number of generations of self pollination that have occurred 

and a squared inbreeding depression term 

ILl = [ ~  Pi 6ii] 2" 

These definit ions are for a single locus, the equivalent  
popula t ion  parameters  are s imply sums over loci. 

The general formula  for the covariance between 
two relatives obtained by self pol l inat ion is 

Ctgg, = 2 rgg, tr2 + A5 62 + (4A] +A2) D1 +,31 D2 

+ (Zl 4 -- Fg Fg, - A 1) ~ ; 
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Table 2. Coefficients of population genetic variances and quadratic components expressed among and within progenies obtained 
by self fertilization of individuals 

Genera- Among Within 
tion 

S 1 1.0 0.25 1.0 0.125 
$2 1.5 0.125 2.5 0.563 
$3 1.75 0.063 3.25 0.781 
$4 1.875 0.031 3.63 0.891 

7 3 Sn 2Fn 1(1 - Fn) 6 F n - 2  ~ F n -  ~ 
S~ 2.0 0 4.0 1.0 

0 0.5 0.25 1.0 0.375 0.25 
0.063 0.25 0.125 0.5 0.188 0.125 
0.047 0.125 0.063 0.25 0.094 0.063 
0.027 0.063 0.031 0.125 0.047 0.031 
@ ( 2 F n - 1 ) ( l - F n )  1 - F  n l ( 1 - F n )  2 ( 1 - F n )  3 (1-Fn)  @(1-Vn) 
0 0 0 0 0 0 

assuming 

A6 = A7 = A8 = A9= 0 

(Cockerham 1983; see also Jacquard 1974 and Harris 
1964). 

Genetic variances among and within progenies 

The linear function of variances and quadratic com- 
ponents expressed among and within selfed progenies 
may be derived directly, using the assumed additive, 
dominance model, with a basic understanding of the 
effects of self fertilization on the genetic structure of 
the population. This, however, is tedious, and unneces- 
sary. The genetic variance expressed among a set of 
progenies can be obtained as the genotypic covariance 
of individuals within those progenies (Kempthorne 
1969). The genetic variance within progenies can be 
obtained as the difference between the total genetic 
variance expressed among individuals in a given gen- 
eration and the genetic variance expressed among the 
progenies considered. 

Breeders of cross pollinated diploid species typical- 
ly evaluate progenies obtained by self-fertilization of 
an individual in the previous generation, and employ 
the S notation. Thus an S~ progeny is obtained by self 
pollination of a single Sn-1 individual, and there have 
been a total of n generations of self pollination. The 
linear function of population variances and quadratic 
components expressed among and within SI to $4, Sa, 
and Soo lines are given in Table 2. The corresponding 
table for the two allele per locus model may be found 
in Hallauer and Miranda (1981 p. 32). 

The coefficients of a 2 both among and within 
progenies are identical for the two allele and general 
models. The coefficients of  a~ among and within 
progenies differs between the two models. In the two 
allele model the coefficients of aD 2 are Fn/2 n and 1 - Fn 
among and within progenies, respectively. These coeffi- 
cients are equal to the sum of the coefficients of  a~ and 

I=I for the general model, as indicated by Cockerham 
(1983). The coefficients of  an 2 , Dl and D2 among proge- 
nies increase linearly with Fn, while the coefficient of 
I=I is quadratic in Fn. The coefficient of a~ expressed 
among progenies and all the coefficient for within 
progenies are linear functions of 1 - F n .  As expected 
all of the coefficients for within progenies tend toward 
zero with increased Fn. 

The Dl,  by definition can be negative. This implies 
that the variance among Soo progenies can be zero in 
two instances. First, for the trivial case where all vari- 
ance and quadratic components are zero; and second, 
the variance among Soo progenies can be zero when 
Di = - T J  an 2 -7~ D2. This is the lower limit for Dl 

Breeders of crop species are also interested in the 
genetic variance expressed among and within selfed 
progenies which have been bulked for one or more 
generations. The coefficients of the linear function of 
population variances and quadratic components ex- 
pressed among and within these bulked progenies are 
given in Table 3. The same general trends for the 
various coefficients which were described for Table 2 
are obvious in Table 3 as well. 

The extension to include epistatic variances is 
straightforward. The coefficients on a 2 ,  O'2D and a2D 
among Sn progenies would be (2Fn) 2, Fn (1 -Fn )  and 
�88  2, respectively and within Sn progenies 
1 + 2Fn - 3F 2, (1 - Fn) and 3/4 (1 - Fn) 2, respectively. 
The coefficients for the epistatic variances in Table 3 
may be obtained as squares or products of the appro- 
priate coefficients. 

Predicted selection response 

In order to define the necessary regression function, the 
selection and response units need to be specified. The 
selection units will be Sn progenies with n = 1,2, 3 . . . . .  ~ .  
The response units will be Sn progenies following re- 
combination of the population and denoted Sn. The 
regression function is thus the covariance of Sn and Sn 
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Table 3. Coefficients of population genetic variances and quadratic components expressed among and within bulk progenies 
obtained by self fertilization 

Generation Current Among Within 
in which generation 
selfing began a~ a~ Dl D2 lq ~r~ cr~ D1 D2 f-I 

0 1 1.0 0.25 1.0 0.125 0 0.5 0.25 1.0 0.375 0.25 
2 1.05 0.063 1.5 0.281 0 0.75 0.187 1.5 0.469 0.188 
3 1.0 0.016 1.75 0.383 0 0.875 0.109 1.75 0.492 0.109 
4 1.0 0.004 1.875 0.439 0 0.938 0.059 1.875 0.499 0.059 
5 1.0 0.001 1.938 0.469 0 0.969 0.03 1.938 0.5 0.03 
6 1.0 0 1.969 0.484 0 0.984 0.016 1.969 0.5 0.016 
oo 1.0 0 2.0 0.5 0 1 0 2.0 0.5 0 

1 2 1.5 0.125 2.5 0.563 0.063 0.25 0.125 0.5 0.188 0.125 
3 1.5 0.031 2.75 0.641 0.016 0.375 0.094 0.75 0.234 0.093 
4 1.5 0.008 2.875 0.691 0.004 0.438 0.055 0.875 0.247 0.055 
5 1.5 0.002 2.938 0.72 0.001 0.469 0.029 0.937 0.249 0.029 
6 1.5 0 2.969 0.735 0 0.484 0.016 0.969 0.249 0.016 

1.5 0 3.0 0.75 0 0.5 0 1 0.25 0 

2 3 1.75 0.063 3.25 0.781 0.047 0.125 0.063 0.25 0.094 0.063 
4 1.75 0.016 3.375 0.82 0.012 0.188 0.047 0.375 0.118 0.047 
5 1.75 0.004 3.438 0.846 0.003 0.219 0.027 0.437 0.123 0.027 
6 1.75 0.001 3.469 0.86 0.001 0.234 0.015 0.469 0.124 0.014 
oo 1.75 0 3.5 0.875 0 0.25 0 0.5 0.125 0 

3 4 1.875 0.031 3.63 0.891 0.027 0.063 0.031 0.125 0.047 0.031 
5 1.875 0.008 3.688 0.91 0.007 0.094 0.023 0.187 0.059 0.023 
6 1.875 0.002 3.719 0.923 0.002 0.109 0.014 0.219 0.061 0.013 
oo 1.875 0 3.75 0.938 0 0.125 0 0.25 0.063 0 

4 5 1.938 0.016 3.813 0.945 0.015 0.031 0.016 0.063 0.023 0.016 
6 1.938 0.004 3.844 0.955 0.004 0.046 0.012 0.094 0.029 0.011 
oo 1.938 0 3.875 0.969 0 0.063 0 0.125 0.031 0 

5 6 1.969 0.008 3.906 0.973 0.008 0.016 0.008 0.031 0.012 0.008 
oo 1.969 0 3.938 0.984 0 0.031 0 0.063 0.016 0 

6 ~ 1.984 0 3.969 0.992 0 0.016 0 0.031 0.008 0 

progeny means divided by the variance among Sn 
progenies. The Sn progeny is related to the Sn progeny 
through an So individual who had as one parent the Sn 
progeny, with the other gamete coming at random 
from the population. 

Assuming no environmental  covariance of relatives, 
the covariance of S~ and S~ progeny means is obtained 
as the expectation of the product of the coded geno- 
typic values minus the product of the expectation of 
the coded genotypic values. The coded expectation of 

the genotypic values of both Sn and S;~ is Fn~-'~Pi~ii , 
i 

where Fn is the inbreeding coefficient following n gen- 
erations of self pollination. Thus, the product of the 
expectations is equal to 

p, iil  
The expectation of the product of the coded genotypic 
values is calculated in two parts, and obtained as the 
sum of the two parts. As indicated previously Sn proge- 

nies are obtained by self poll ination of Sn-~ indi- 
viduals. The populat ion structure in generation n - 1 is 

Fn-1 Z pimimi q- (1 - Fn_l) Z Z pi pjmimj . 
i i j 

Consider an individual  in generation n - 1  which has 

genotype AiAi,  the coded genotypic mean value of Sn 
progeny from this individual  is 

2 ~ i +  ~ii. 

The gametic output  of the S. progeny is equal to the 
gametic output of the Sn_ 1 individual,  while the 
gametic output of the populat ion is 

Z Pk Ak = Z Pi Ai = ~'~ Pj Aj .  
k i j 

The distribution of So progeny having as one parent 
either the individual AiAi or its S. progeny is 

pkAiAk - 
k 



The S~, progeny distribution from these So individuals is 

(' ' ~', pkAkAk) + (I -- Fn) E pkAiAk Fn ~-Ai Ai + ~- 
k k 

with coded genotypic value of 

F,  F,  
0q + --~-6ix + -~-  ~ Pk 6kk. 

k 

Now, consider an individual in generation n - 1  
with genotype AiAj, the coded genotypic mean value 
of Sn progeny from this individual is 

1 (~ii q'- 6jj + 2~ij ) . ~i+ ~j +-~ 

The gametic output of the Sn progeny is equal to the 
gametic output of the S,_ 1 individual, i.e. 

I ( A  i + Aj) 

The distribution of So progeny having as one parent 
either the individual or its S~ progeny is 

~ (~k Pk AiAk q- ~ pkAj Ak) " k 

The Sn progeny distribution from these So individuals is 

3 
+ ( 1 -  F n ) ( ~  Pk a i A k +  ~ Pk %Ak/] 

~ k  k /l 

with coded genotypic value of 

, , Fn (2..~)'aii+ajj+2Wpk~k ' '  
2- ~Xi + 2 ~J + T k 

The covariance of S, and S~, progenies is thus 

Fn-I ~ Pi (2~i + 6ii) ~i+ ~ii -t- --~-- s pk/~kk 
i k 

i (6ii + 6ii + 26ij)] + (1 - F ~ - I )  ~ ~'~ Pi Pj [ei + ~j + -~ 
i j 

= F n _ , ~ i  p i [2o~2+( l+Fn)  Oqr 

+ Fn 0r s Pk ~kk + T ~ i i  + ~ii Z pk C~kk 
k k 

+ ( 1 - F n - 0  . . PiPj �89 

2 (Fn) + 1 2 (Fn) + 1 
-4 8 O~i 6ii -4 8 O~j r 

2 (Fn) + 1 2 (F.) + 1 
+ 8 O~ i 6jj + 8 0~j 6ii 
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I 1 Fn 
"4- ~- 0~ i ~ij + ~" 0~j 6ij + T oci Z Pk ~k 

k 

Fn Fn 2 Fn 
+ T 0 ~ j  k ~ p k t ~ k k + - ~ g i i - l - T 6 i i 6 j j  

Fn Fn Fn Fn 
+ 16 6J~ q-"--if-- ~ii 6iJ "~- ~ 6JJ 6iJ + ~ 6ii ~-"~ Pk ~ k k k  

] + Fn8 4 J ~ - ' ~ P k ~ k + 4  - - 6 i j ~ - ' p k ~ k k  k 

-Fn2 [  i ~ p i 6 i i ]  2 

=Fn_ 1 a2A+(I+Fn) DI+--~--D2+FnI: t  + ( 1 - F n - I )  

= Fn a2A + (F~ + ~- 2 4 Fn - D2. 

The coefficients for the three components for several 
levels of inbreeding are given in Table 4. 

The regression of Sn progeny means on Sn progeny 
means can now simply be defined as 

Coy (Sn, S~,) 
Var (Sn) 

where Cov (Sn, Sn) has been defined and Var (Sn) is the 
variance of Sn progeny means and is equal to 

0-2 0-2 
_1_ ~ge q_ 0-~, 

rE E 

where 0-e 2 is the error variance, O'g2e is the genotype x 
environment interaction variance, and 0-~ is the genetic 
variance expressed among Sn progenies and r and E are 
the numbers of replications and environments for 
evaluation, respectively. The error variance can further 
be expressed as 

O-e 2 = (a~ + a 2 w g ) / m  + a 2 , 

Table4. Coefficients of population variances or quadratic 
components involved in the covariance of Sn S~ progenies 

Covariance a~ D 1 D2 

Si, S~ 0.5000 0.5000 0.0625 
$2, S~ 0.7500 1.1875 0.2344 
$3, S~ 0.8750 1.5781 0.3555 
$4, S~ 0.9375 1.7852 0.4248 

/ 

Sn ' Sn Fn (F 2_  1 3 Fn ) / 3 F 2 _  l~n / 2"~-2- \4 n 4 ] 

Soo, S~o 1.0000 2.0000 0.5000 
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where a2e and aZwg are within plot environmental and 
genetic variances respectively, o 2 is the plot to plot 
variance and m is the number of plants per plot. From 
Table 2, awg2 is equal to 

O'2wg = (1 -Fn)  [a2A + 2 a2 + 2D1 + �88  2 l~I], 

and 

a~= 2 F n a 2 + 2 ( 1 -  F,) a~+  ( 6 F , - 2 )  D, 

7 3 I (2 F,  - 1) (1 - F,) I:I + (~- Fn - ~) D2 + ~ 

When recombination takes place only among selected 
progenies, then, the regression function is the regres- 
sion of Sn progeny mean on mid-parent value, the 
numerator is unchanged, but the variance of the mid- 
parent value is 2 the variance of the Sn progeny mean. 
Thus, predicted gains can be expressed as 

= (Xssn- Xsn)/Vn a~+ (-~ Fn + Fn2-2) D, 

r 

G 

3 I ~ I a~+  2D1 + 7 D 2  + ?- H]/mr e �9 ~L  + (1 - F~ [~I + :  

2 2 
+ ~- + a ~ e + 2 F n ~ 2 + 2 ( l _ F n )  cr2 

r E  E 
7 3 + (6 F. - 2) D1 + (~ Fn - ~) D2 

+ 2 (2 V, - 1) (1 - F,) I~I], 

where all terms are defined as previously and ]~ssn and 
Xsn are the means of the selected Sn progeny and the 
population of Sn progenies, respectively. 

The formulae for G, where the assumption of two 
alleles per locus is made, have in the numerator some 
fraction of the additive genetic variance, i.e., gains are 
directly proportional to the additive variance in the 
population. In contrast, when this assumption is 
relaxed, selection response involves not only the addi- 
tive genetic variance, but also Dl and D2. The Dl can 
be negative as noted by Cockerham (1983). This 
suggests that even for populations with larger values 
for ~2, predicted gains may be low. In particular 
Cov(So~,S~), i.e., doubled haploids, is equal to 
~2 + 2D 1 +~-D2 which, if Dl takes its lowest possible 
value, will be equal to zero. Thus, despite a large value 
for a~, no selection response may be realized using 
doubled haploids under these circumstances. Addi- 
tionally, if D~ is negative, selection response will, in 
most instances, be less than predicted with the assump- 
tion of two alleles per locus. Use of models which 
assume two alleles per locus to predict gains for 
populations with multiple alleles is inappropriate, and 
may give inflated estimates of selection response. 

Some suggested progenies to evaluate in estimation 
of population variances and quadratic components 

With 5 population variances or quadratic components 
to estimate we need a minimum of 5 genetic variances 
or covariances which are linear functions of these 
population parameters. The mechanism for obtaining 
the proposed progenies is as follows: a random set of 
So individuals is self pollinated to obtain a set of S~ 
lines; equal size random sets of S~ lines are designated 
males and females; a Design II (Comstock and Robin- 
son 1948; Hallauer and Miranda 1981) mating is 
produced by crossing Sl lines and a set of individuals 
within each $1 line is also self pollinated. The proge- 
nies produced for evaluation are the set of full sib 
families from the Design II, the $1 lines and the $2 bulk 
progenies. 

From the analysis of the Design II both a2A and a~ 
can be estimated. From the analysis of the S~ lines the 
component for the genetic variance among $1 lines is 
equal to 

i a Z + D 1  1 D2 erA2 + u + ~  �9 

From the analysis of the $2 bulks, the component for 
the genetic variance among $2 bulks is equal to 

3 ~2  • I _ 2  3 D I  4- 3-~ D2 �9 ~- t~A T --~- OD "{- ~ - 

Thus far 5 linear functions in 4 unknowns have been 
defined, hence each can be uniquely estimated and 
their standard errors defined (see Hallauer and 
Miranda 1981). 

At least three genotypic covariances among these 
progenies can be defined; the covariance of an inbred 
progeny mean with half sib family mean where the So 
individual is common can be shown to be 

i o.2+ D1 Cov (Sn, H. S.) = ~ 

The covariance of full sib progeny means with the 
average of the self progeny means of the two parents is 

C o v ( F . S . , g 0 - i  z J - - - 20"A  + ~ D I .  

This second covariance is identical to Coy (H. S., SO. 
Finally, the covariance of S1 line mean with $2 bulk 
progeny mean is; 

l a ~ + 5  3f l  
C O V  ( S l ,  $ 2 )  = 0 .2 q- ~- ~D~+ ~-~D2-~ 

Thus there exists a set of up to nine linear functions of 
the 5 population parameters, and the corresponding 
point estimates can be obtained by least squares. These 
progenies in contrast to those proposed by Cockerham 
(1983) may provide more information on the domi- 
nance variance. 

This completes the extension of theory from 2 
alleles per locus to multiple alleles per locus as it 
applies to both variances among and within progenies 
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and selection response. Hopefully this work clarifies for 
some the condensed coefficients identity which at 
times are complex. This work complements the results 
of  Matzinger and Cockerham (1985) who didn't  ad- 
dress this particular type of  selection response, but 
dealt with some closely related and equally important  
areas. 
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